Synthesis of Functionalized Quinolines and Benzo[c][2,7]naphthyridines Based on a Photo-Fries Rearrangement

Giacomo Guerrini,[†] Maurizio Taddei,[‡] and Fabio Ponticelli^{*,†}

 † Dipartimento di Chimica and † Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via Aldo Moro 2, I-53100 Siena, Italy

S Supporting Information

photo-Fries rearrangement of p-substituted anilides afforded differently substituted o-amino ketones that reacted in situ with acetylenic Michael acceptors such as dimethyl acetylenedicarboxylate (DMAD) to give 6,4-disubstituted quinoline 2,3-dicarboxylates. Starting from anilides derived from β-alanine, a naphthyridine nucleus can also be assembled.

Quinoline is a common structural motif found in many
natural products with remarkable pharmacological properties. Members of this family have wide applications in medicinal chemistry, being used as antimalarial (chloroquine and mefloquine), anti-inflammatory, antiasthmatic, antibacterial, and antihypertensive activities.¹ Benzo[c][2,7]-naphthyridine is also a nucleus present in alkaloids isolated from marine organisms with diverse biological activities, 2 such as inhibition of phosphoinositidedependent protein kinase 1 (PDK-1) involved in the progression of some kinds of cancer, release of calcium, antiviral and antimicrobial activity, and cytotoxicity.³ A general retrosynthetic approach to quinolines and naphthyridines suggests that aromatic ortho-amino ketones are useful building blocks for the preparation of both heterocyclic systems. However, selective access to these types of compounds is troublesome, requiring multistep procedures, harsh reaction conditions, toxic and/ or expensive reagents, and tedious protection/deprotection sequences.⁴

Recently, we described a rapid transformation of anilides into aromatic o-amino ketones based on the photochemical version of the Fries rearrangement⁵ that allowed easy preparation of $1,4$ benzodiazepines 6 and quinazolines, 7 two important classes of organic scaffolds. We report here that the same class of aromatic o-amino ketones (II) can be used for a one-pot two-step procedure that starts from the anilide (I) and gives directly quinolines 2,3-dicarboxylate (III), easily transformed, through an additional high-yielding step, into $\frac{\partial c}{\partial z}$ [2,7]-naphthyridines (IV) (Figure 1).

In order to investigate the viability of the project, we started to explore the variety of applications in the first step transformation of anilides into aromatic o-aminophenones. The Fries reaction largely used for the transformation of esters into substituted

Figure 1. Possible reaction paths of anilides (I).

phenols has found less application in its "aza version" as the reaction is generally carried out in the presence of corrosive Lewis acids not compatible with the presence of functional groups. Acetanilide 1a was employed as the model substrate to investigate the best conditions for the photo-Fries rearrangement. Several experiments were carried out in ethanol and acetonitrile with a multilamps apparatus at 254 and 310 nm. The 254 nm lamp and degassed acetonitrile gave better results in terms of conversion and isolated yields of 2a. The presence of sensitizer or quencher reagents (i.e., xylene, benzophenone, piperylene, etc.) had no effect of the yield of the photochemical process. The presence of an electron-donating substituent on the

Published: August 10, 2011 Received: June 30, 2011

Table 1. Photochemistry of the Aromatic Amides $1a-k^a$

^a Reaction conditions: 0.1 M solution of amides in degassed MeCN, irradiated at 254 nm with a 2×15 W low-pressure mercury lamp for 20 h. b Calculated yields on NMR spectra. ^c The ortho (47%) + para (40%) isomers.

Table 2. One-Pot (Two-Step) Preparation of Quinolines $3a-d$ and $3g-k$

aromatic ring gave acceptable yields of the rearranged product (entries 2, 3, 8, 9, and 11 in Table 1), whereas with anilides carrying a nitro group or a chlorine atom (entries 5 and 6 in Table 1), the reaction proceeded with low conversion and poor yields, highlighting the application limits of the reaction. However, a library of o-aminophenones was obtained (see Table 1).

When a Michael acceptor such as dimethyl acetylenedicarboxylate (DMAD) was added directly in the solution at the end of the photo-Fries rearrangement, a series of functionalized quinolines 2,3-dicarboxylate (III) can be prepared. The results of this one-pot (two-step) procedure are collected in Table 2. The same products can be obtained from a stepwise procedure by rt reaction of aminophenones $2a-d$ and $2g-k$ with DMAD (yields ranging

Scheme 1. Proposed Mechanism for the Formation of Quinolines $3a-d$ and $3g-k$

Table 4. Preparation of Naphthyridines $4g-j$

from 58 to 78%). It is interesting to notice that, with respect to the stepwise procedure, in the one-pot (two-step) process, it is possible to obtain an enhancement of the yields (see Table 3).

On the other hand, the use of different olefinic or monosubstituted acetylenes rather than DMAD gave bad results, probably because of the poor nature of Michael acceptors toward the amino group.⁸ The Michael mechanism is in accord with what was observed on similar substrates in a recent work.⁹

Formation of quinolines can be accounted for by the mechanism illustrated in Scheme 1.

Starting from the β -Ala derivatives $(1g-k)$, it is also possible that the closing of the third heterocyclic ring obtains the 1,2,3,4 tetrahydrobenzo $\lceil c \rceil$ [2,7]naphthyridine system (IV). The reaction was carried out using K_2CO_3 as the base in MeOH at rt with hydrolysis of the methyl ester and removal of the Cbz protection. In these conditions, the potassium salts $4g-k$ were isolated in good yields as solid products (Table 4).

This behavior was strictly related to the ring size as attempts to extend this protocol to the γ -Ala derivative 1k gave bad results. It is possible that the failure of our effort to close the third heterocycle on the molecule 3k could be due to the competitive formation of polymeric material.

In conclusion, we have herein reported an innovative and convenient synthetic approach for the synthesis of two important classes of heterocyclic scaffolds using the capability of the aromatic amides to give the photo-Fries rearrangement. Quinolines from simple acetanilides (1a-d) and β -Ala (1g-j) or γ-Ala (1k) derivatives have been obtained with yields ranging from modest to good using a single one-pot procedure. Good yields have been obtained for the cyclization of ketones $2h-k$ to functionalized tetrahydronaphthyridines.

EXPERIMENTAL SECTION

General. Melting points were determined with a hot stage apparatus. ¹H and ¹³C NMR spectra were recorded at 27 °C (CDCl₃ or CD₃OD), unless otherwise stated, with an instrument operating at 200.13 and 50.33 MHz, respectively, or with an instrument operating at 400.13 and 100.62 MHz, respectively. Chemical shifts are reported in parts per million from internal TMS. Mass spectra were recorded in the positive or negative ion mode with an instrument by using electrospray ionization. HRMS-ESI data were recorded with a Orbitrap instrument. All solvents were previously dried according to standard procedures. Analytical TLC was performed on silica gel 60 F_{254} plates. Flash column chromatography was carried out on silica gel $(0.040 - 0.063$ mm).

General Procedure for Preparation of Anilides $1a-q$. The starting amine was dissolved in anhydrous conditions and under nitrogen atmosphere in dry dichloromethane at 0° C. Then triethylamine (2.0 equiv) and acetyl chloride (1.4 equiv) were poured into the solution, and the reaction was monitored by TLC (1:1 petroleum ether/ AcOEt). The resulting amide was purified by crystallization from water.

Melting points and NMR spectra were identical to those obtained with authentic samples. $^{\rm 10}$

General Procedure for Preparation of Anilines $2a-k$. A 0.1 M solution of the anilides $(1a-k)$ $(0.5 \text{ mmol in } 5 \text{ mL of } \text{MeCN})$ degassed with two cycles of freeze-thaw) was irradiated at 254 nm in a quartz sealed tube using two low-pressure mercury lamps with a total power of 30 W for 20 h at room temperature. After removal of the solvent under reduced pressure, the residues were purified by column chromatography with a variable ratio of petroleum ether/ethyl acetate.

General Procedure for the One-Pot Preparation of Quinolines $3b-d$ and $3h-k$. The 0.1 M solutions in MeCN (degassed with two cycles of freeze-thaw) of the anilides $(1b-d$ and $1g-k)$ were irradiated at 254 nm in a quartz sealed tube using a low-pressure mercury lamp for 20 h at room temperature. To the crude reaction mixtures and in the same sealed tube was then added $1-5$ equiv of dimethyl acetylenedicarboxylate (DMAD), and the solutions were warmed to 60 C under magnetic stirring overnight. After removal of the solvent under reduced pressure, the residues were purified by column chromatography with a variable ratio of petroleum ether/ethyl acetate. Compound 3a has been obtained with the stepwise procedure only.

1-(2-Amino-5-methylphenyl)ethanone, 2b: 41 mg, 56%; chromatographic eluent, petroleum ether/AcOEt 2:1. Melting point and NMR spectra were identical to those obtained with an authentic sample.¹¹

1-(2-Amino-5-methoxyphenyl)ethanone, 2c: 58 mg, 71%; chromatographic eluent, petroleum ether/AcOEt 2:1. Melting point and NMR spectra were identical to those obtained with authentic sample.¹²

1-(2-Amino-5-fluorophenyl)ethanone, 2d: 49 mg, 64%; brown solid; chromatographic eluent, petroleum ether/AcOEt 3:2; R_f = 0.30; mp 64–65 °C; ¹H NMR (200 MHz, CDCl₃) δ 2.52 (s, 3H),

6.00 (br s, 2H), 6.55–6.62 (m, 1H), 6.97–7.07 (m, 1H), 7.32–7.38 $(m, 1H)$; ¹³C NMR (50 MHz, CDCl₃) δ 27.9, 116.2, 118.4, 122.2, 122.7, 146.7, 150.9, 199.7; ESI-MS 154 $[M + H]^+$, 176 $[M + Na]^+$. Anal. Calcd for C₈H₈FNO: C, 62.74; H, 5.26; N, 9.15. Found: C, 62.53; H, 5.31; N, 9.08.

Benzyl 3-(2-Aminophenyl)-3-oxopropylcarbamate, 2g: The product has not been isolated but was used as reaction intermediate because of the presence of the *para*-substituted regioisomer that has a very similar retention factor; $R_f = 0.45$ (petroleum ether/AcOEt 1:1); ESI-MS $299 [M + H]^+$, $321 [M + Na]^+$.

Benzyl 3-(2-Amino-5-methylphenyl)-3-oxopropylcarbamate, 2h: 41 mg, 26%; yellow oil; chromatographic eluent, petroleum ether/ AcOEt 1:1; $R_f = 0.55$; ¹H NMR (200 MHz, CDCl₃) δ 2.22 (s, 3H), 3.14 $-$ 3.20 (t, J = 5.43 Hz, 2H), 3.54 $-$ 3.62 (t, J = 5.43 Hz, 2H), 5.07 (s, 2H), 5.42 (br s, 1H), 6.54–6.59 (d, J = 8.65 Hz, 1H), 7.07–7.11 (d, J = 8.65 Hz), 7.32 (s, 5H), 7.46 (br s, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 21.3, 37.6, 39.8, 67.2, 116.2, 117.9, 126.8, 127.4, 127.7, 128.3, 129.5, 135.1, 137.1, 145.9, 156.1, 200.6; ESI-MS 335 $[M + Na]^+$. Anal. Calcd for $C_{18}H_{20}N_2O_3$: C, 69.21; H, 6.45; N, 8.97. Found: C, 69.47; H, 6.39; N, 9.16.

Benzyl 3-(2-Amino-5-methoxyphenyl)-3-oxopropylcarbamate, 2i: 67 mg, 41%; brown oil; chromatographic eluent, petroleum ether/ AcOEt 1:1; $R_f = 0.50$; ¹H NMR (200 MHz, CDCl₃) δ 3.13–3.18 (t, J = 5.52 Hz, 2H), 3.54-3.63 (q, J = 5.52 Hz, 2H), 3.75 (s, 3H), 5.07 (s, 2H), 5.42 (bt, $J = 5.52$ Hz, 1H), 5.94 (br s, 2H), $6.58-6.63$ (d, $J = 8.88$ Hz, 1H), 6.93–6.97 (m, 1H), 7.11–7.13 (m, 1H), 7.32–7.36 (m, 5H); ¹³C NMR $(50 \text{ MHz}, \text{CDCl}_3)$ δ 36.1, 39.0, 55.9, 66.6, 113.0, 117.3, 118.8, 123.8, 128.0, 128.5, 128.6, 136.5, 145.1, 150.0, 156.4, 200.5; ESI-MS 327 [M H]⁻, 329 [M + H]⁺, 351 [M + Na]⁺. Anal. Calcd for C₁₈H₂₀N₂O₄: C₁ 65.84; H, 6.14; N, 8.53. Found: C, 66.02; H, 6.31; N, 8.62.

Benzyl 3-(2-Amino-5-fluorophenyl)-3-oxopropylcarbamate, 2j: 54 mg, 34%; yellow oil; chromatographic eluent, petroleum ether/ AcOEt 1:1; $R_f = 0.45$; ¹H NMR (200 MHz, CDCl₃) δ 3.07–3.13 (t, J = 5.64 Hz, 2H), 3.51-3.60 (q, J = 5.64 Hz, 2H), 5.05 (s, 2H), 5.40 (bt, J = 5.64 Hz, 1H), 6.13 (br s, 2H), 6.55–6.61 (m, 1H), 6.96–7.05 (m, 2H), 7.30 (m, 5H); ¹³C NMR (50 MHz, CDCl₃) δ 36.0, 38.9, 66.6, 115.2, 115.6, 118.4, 118.6, 122.5, 123.0, 128.0, 128.4, 136.4, 146.9, 155.6, 201.0; ESI-MS 339 $[M + Na]$ ⁺. Anal. Calcd for C₁₇H₁₇FN₂O₃: C, 64.55; H, 5.42; N, 8.86. Found: C, 64.69; H, 5.48; N, 8.77

Benzyl 4-(2-Amino-5-methylphenyl)-4-oxobutylcarbamate, 2k: 56 mg, 34%; yellow oil; chromatographic eluent, petroleum ether/AcOEt 1:1; ¹H NMR (200 MHz, CDCl₃) δ 1.84–1.98 (q₁ J = 6.62 Hz, 2H), 2.24 $(s, 3H)$, 2.92 – 2.99 (t, J = 6.62 Hz, 2H), 3.22 – 3.31 (q, J = 6.62 Hz, 2H), 5.08 $(s, 2H)$, 5.08 (br s, 1H), 6.54–6.62 (m, 1H), 6.93–7.10 (m,1H), 7.33 $(m, 6H)$, 7.48 (br s, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 20.3, 24.5, 36.0, 40.6, 66.4, 115.1, 117.4, 124.6, 127.9, 128.3, 128.4, 129.6, 130.5, 136.4, 148.1, 156.4, 201.6; ESI-MS 327 [M + H]⁺, 349 [M + Na]⁺. Anal. Calcd for $C_{19}H_{22}N_2O_3$: C, 69.92; H, 6.79; N, 8.58. Found: C, 70.03; H, 6.88; N, 8.41.

Dimethyl 4-Methylquinoline-2,3-dicarboxylate, 3a: 73 mg, 28%; light brown solid; chromatographic eluent, petroleum ether/ AcOEt 1:1; mp $93-95$ °C; ¹H NMR (400 MHz, CDCl₃) δ 2.63 $(s, 3H)$, 3.92 $(s, 3H)$, 3.97 $(s, 3H)$, 7.56-7.60 $(t, J = 8.0 \text{ Hz}, 1H)$, 7.69-7.73 (t, J = 8.0 Hz, 1H), 7.96–7.98 (d, J = 8.4 Hz, 1H), 8.15–8.17 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 15.1, 52.4, 52.9, 123.7, 126.8, 127.6, 128.7, 130.4, 130.6, 143.5, 144.6, 145.9, 165.2, 169.9; ESI-MS $260 [M + H]^{+}$, $282 [M + Na]^{+}$. Anal. Calcd for $C_{14}H_{13}NO_4$: C, 64.86; H, 5.05; N, 5.40. Found: 64.92; H, 5.13; N, 5.33.

Dimethyl 4,6-Dimethylquinoline-2,3-dicarboxylate, 3b: 183 mg, 67%; brown solid; chromatographic eluent, petroleum ether/ AcOEt 1:1; mp 135–138 °C; ¹H NMR (200 MHz, CDCl₃) δ 2.57 (s, 3H), 2.67 (s, 3H), 3.98 (s, 3H), 4.01 (s, 3H), 7.60-7.64 (m, 1H), 7.80 $(s, 1H), 8.10-8.15$ (m, 1H); ¹³C NMR (50 MHz, CDCl₃) δ 15.6, 22.1, 52.9, 53.4, 123.0, 127.4, 128.1, 130.7, 133.1, 139.6, 142.8, 143.1, 144.9, 165.4, 168.7; ESI-MS 274 [M + H]⁺, 296 [M + Na]⁺. Anal. Calcd for C15H15NO4: C, 65.92; H, 5.53; N, 5.13. Found: 65.99; H, 5.41; N, 5.30.

Dimethyl 6-Methoxy-4-methylquinoline-2,3-dicarboxylate, 3c: 124 mg, 40%; light brown solid; chromatographic eluent, petroleum ether/AcOEt 1:1; mp 130-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.64 (s, 3H), 3.96 (s, 3H), 3.99 (s, 3H), 4.01 (s, 3H), 7.21 (s, 1H), 7.42 – 7.45 (m, 1H), 8.14 – 8.16 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 15.8, 52.8, 53.3, 55.7, 101.9, 123.5, 128.0, 129.6, 132.7, 141.5, 142.1, 142.4, 160.0, 165.7, 168.8; ESI-MS 290 $[M + H]^{+}$, 312 $[M + Na]^{+}$. Anal. Calcd for $C_{15}H_{15}NO_5$: C, 62.28; H, 5.23; N, 4.84. Found: C, 62.09; H, 5.19; N, 4.97.

Dimethyl 6-Fluoro-4-methylquinoline-2,3-dicarboxylate, 3d: 169 mg, 61%; light brown solid; chromatographic eluent, petroleum ether/AcOEt 1:1; mp 93-95 °C; ¹H NMR (200 MHz, CDCl₃) δ 2.66 $(s, 3H)$, 3.99 $(s, 3H)$, 4.02 $(s, 3H)$, 7.53-7.69 (m, 2H), 8.22-8.29 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 15.7, 53.0, 53.5, 108.2, 121.0, 121.5, 127.9, 129.4, 133.7, 133.9, 143.4, 159.6, 165.4, 168.2; ESI-MS 278 $[M + H]^{+}$, 300 $[M + Na]^{+}$. Anal. Calcd for $C_{14}H_{12}FNO_4$: C, 60.65; H, 4.36; N, 5.05. Found: C, 60.78; H, 4.19; N, 5.09.

Dimethyl 4-(2-(Benzyloxycarbonylamino)ethyl)quinoline-2,3-dicarboxylate, 3g: 160 mg, 36%; yellow oil; chromatographic eluent, petroleum ether/AcOEt 3:2; ¹H NMR (200 MHz, CDCl₃) δ $3.32 - 3.39$ (t, J = 6.61 Hz, 2H), $3.51 - 3.58$ (q, J = 6.61 Hz, 2H), 3.96 (s, 3H), 4.02 (s, 3H), 5.09 (s, 2H), 5.30 (bt, $J = 6.61$ Hz, 1H), 6.82–6.86 $(m, 1H)$, 7.31 $(m, 5H)$, 7.70–7.81 $(m, 2H)$, 8.24–8.34 $(m, 1H)$; ¹³C NMR (50 MHz, CDCl3) δ 30.2, 41.4, 53.1, 53.4, 66.7, 119.0, 124.3, 128.1, 128.5, 129.5, 129.7, 131.2, 131.2, 136.3, 136.4, 144.5, 146.9, 156.4, 156.5, 165.6, 168.4; ESI-MS 423 $[M + H]$ ⁺, 445 $[M + Na]$ ⁺. Anal. Calcd for C₂₃H₂₂N₂O₆: C, 65.39; H, 5.25; N, 6.63. Found: C, 65.46; H, 5.19; N, 6.77.

Dimethyl 4-(2-(Benzyloxycarbonylamino)ethyl)-6-methylquinoline-2,3-dicarboxylate, 3h: 209 mg, 48%; yellow oil; chromatographic eluent, petroleum ether/AcOEt 3:2; ¹H NMR (200 MHz, CDCl₃) δ 2.59 (s, 3H), 3.28–3.36 (t, J = 6.94 Hz, 2H), 3.52–3.61 (q, J = 6.94 Hz, 2H), 3.97 (s, 3H), 4.02 (s, 3H), 5.09 (s, 2H), 5.29 (bt, $J = 6.94$ Hz, 1H), 7.31 (s, 5H), 7.62-7.67 (d, $J = 8.54$ Hz, 1H), 8.04 (s, 1H), 8.14-8.18 (d, J = 8.54 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃) δ 22.3, 30.1, 41.3, 53.1, 53.4, 66.6, 123.1, 127.5, 128.0, 128.1, 128.5, 130.9, 133.5, 136.3, 140.2, 143.6, 144.0, 145.4, 156.5, 165.6, 168.6; ESI-MS 437 [M + H]⁺. Anal. Calcd for $C_{24}H_{24}N_2O_6$: C, 66.04; H, 5.54; N, 6.42. Found: C, 65.90; H, 5.61; N, 6.38.

Dimethyl 4-(2-(Benzyloxycarbonylamino)ethyl)-6-methoxyquinoline-2,3-dicarboxylate, 3i: 172 mg, 38%; brown oil; chromatographic eluent, petroleum ether/AcOEt 1:1; ¹H NMR (200 MHz, CDCl₃) δ 3.23–3.29 (t, J = 6.90 Hz, 2H), 3.48–3.58(q, J = 6.90 Hz, 2H), 3.96 (s, 3H), 4.01 (s, 3H), 4.04 (s, 3H), 5.09 (s, 2H), 5.26 (bt, J = 6.90 Hz, 1H), 7.36 (m, 5H), 7.44 (m, 1H), 7.71 (m, 1H), 8.15 (m, 1H); ¹³C NMR (50 MHz, CDCl₃) δ 30.7, 40.9, 52.1, 53.0, 53.3, 56.0, 66.6, 102.1, 124.2, 127.9, 128.0, 128.1, 128.5, 129.2, 132.6, 136.3, 142.0, 142.9, 156.6, 160.4, 165.6, 168.8; ESI-MS 453 $[M + H]$ ⁺, 475 $[M + Na]$ ⁺. Anal. Calcd for $C_{24}H_{24}N_2O_7$: C, 63.71; H, 5.35; N, 6.19. Found: C, 63.64; H, 5.48; N, 6.26.

Dimethyl 4-(2-(Benzyloxycarbonylamino)ethyl)-6-fluoroquinoline-2,3-dicarboxylate, 3j: 185 mg, 42%; orange oil; chromatographic eluent, petroleum ether/AcOEt 1:1; ¹H NMR (200 MHz, CDCl₃) δ 3.26-3.33 (t, J = 6.69 Hz, 2H), 3.49-3.59 (q, J = 6.69 Hz, 2H), 3.97 (s, 3H), 4.03 (s, 3H), 5.10 (s, 2H), 5.24 (bt, J = 6.69 Hz, 1H), 7.317.33 (m, 5H), 7.59 (m, 1H), 7.97 (m, 1H), 8.28 (m, 1H); 13C NMR $(50 \text{ MHz}, \text{CDCl}_3)$ δ 29.7, 41.0, 53.2, 53.5, 66.8, 66.9, 108.0, 108.5, 121.4, 122.0, 128.0, 128.1, 128.5, 133.8, 134.0, 136.3, 144.0, 156.5, 159.9, 165.4, 168.2; ESI-MS 441 [M + H]⁺, 463 [M + Na]⁺. Anal. Calcd for C23H21FN2O6: C, 62.72; H, 4.81; N, 6.36. Found: C, 62.58; H, 4.87; N, 6.22.

Dimethyl 4-(3-(Benzyloxycarbonylamino)propyl)-6-methylquinoline-2,3-dicarboxylate, 3k: 158 mg, 35%; yellow oil; chromatographic eluent, petroleum ether/AcOEt 1:1; ¹H NMR (400 MHz, CDCl₃) δ 1.90 – 1.98 (quintet, J = 7.60 Hz, 2H), 2.56 (s, 3H), 3.05 – 3.09 (t, J = 7.60 Hz, 2H), 3.26 - 3.32 (q, J = 7.60 Hz), 3.93 (s, 3H), 4.00 (s, 3H), 5.08 (s, 2H $+$ bt, 1H), 7.27 – 7.33 (m, 5H), 7.60 – 7.62 (d, J = 8.40 Hz, 1H) 7.78 (s, 1H), 8.13–8.15 (d, J = 8.40 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃) δ 22.2, 27.0, 30.7, 40.6, 52.9, 53.3, 66.6, 122.8, 126.9, 127.1, 128.0, 128.1, 128.5, 131.0, 133.2, 136.5, 139.8, 144.1, 145.5, 146.3, 156.5, 165.7, 168.7; ESI-MS 451 $[M+H]^{+}$. Anal. Calcd for $C_{25}H_{26}N_2O_6$: C, 66.65; H, 5.82; N, 6.22. Found: C, 66.74; H, 5.77; N, 6.09.

General Procedure for the Preparation of Lactames $4h-k$. Quinolines $3h$ – k were treated with 2.5 equiv of potassium carbonate in MeOH at 60 °C under magnetic stirring overnight. Afterward, the solvent was removed under reduced pressure and the residue was washed with chloroform to remove the organic impurities.

Potassium 4-Oxo-1,2,3,4-tetrahydrobenzo[c][2,7]naphthyridine-5-carboxylate, 4g: 80 mg, 70%; pale brown solid; mp $>$ 300 °C; ¹H NMR (200 MHz, D₂O) δ 3.40–3.47 (t, J = 7.00 Hz, 2H), 3.61-3.68 (t, J = 7.00 Hz, 2H), 7.31 (br s, 1H), 7.61-8.19 (m, 4H); ¹³C NMR (50 MHz, D₂O) δ 24.7, 39.1, 125.4, 126.5, 128.4, 128.8, 129.2, 129.6, 130.3, 137.2, 149.8, 158.8, 171.6; ESI-MS 241 [M-K]. HRMS (ESI) calcd for $C_{13}H_9N_2O_3K_2^+$ 318.9887, found 318.9883.

Potassium 9-Methyl-4-oxo-1,2,3,4-tetrahydrobenzo[c][2,7] naphthyridine-5-carboxylate, 4h: 129 mg, 81%; orange solid; mp $>$ 300 °C; ¹H NMR (200 MHz, CD₃OD) δ 2.58 (s, 3H), 3.37–3.43 (t, J = 6.80 Hz, 2H), 3.59-3.66 (t, J = 6.80 Hz, 2H), 7.32 (br s, 1H), 7.65-7.96 (m, 3H); 13C NMR (50 MHz, D2O) δ 24.3, 24.8, 39.0, 119.1, 123.6, 126.3, 126.5, 129.2, 129.7, 131.3, 132.2, 144.5, 166.2, 172.0; ESI-MS 333 $[M + K]^+, 255 [M - K]^-,$ HRMS (ESI) calcd for $C_{14}H_{11}N_2O_3K_2^+$ 333.0044, found 333.0038.

Potassium 9-Methoxy-4-oxo-1,2,3,4-tetrahydrobenzo[c]- [2,7]naphthyridine-5-carboxylate, 4i: 110 mg, 83%; yellow solid; mp >300 °C; ¹H NMR (200 MHz, CD₃OD) δ 3.33–3.39 (t, J = 6.10 Hz, 2H), 3.60-3.66 (t, J = 6.10 Hz, 2H), 3.96 (s, 3H), 7.38-7.95 (m, 3H); ¹³C NMR (50 MHz, D₂O) δ 24.7, 39.0, 56.5, 103.8, 115.9, 118.7, 124.9, 126.4, 130.2, 143.2, 149.9, 158.5, 166.5, 176.5; ESI-MS 349 $[M + K]^+$, 271 $[M -$ K]⁻; HRMS (ESI) calcd for $C_{14}H_{11}N_2O_4K_2^+$ 348.9993, found 348.9989.

Potassium 9-Fluoro-4-oxo-1,2,3,4-tetrahydrobenzo[c][2,7] naphthyridine-5-carboxylate, 4j: 105 mg, 74%; pale brown solid; mp >300 °C; ¹H NMR (200 MHz, CD₃OD) δ 3.28-3.35 (t, J = 6.90 Hz, 2H), 3.60 -3.67 (t, J = 6.90 Hz, 2H), 7.28 (br s, 1H), 7.68 -8.12 (m, 3H); ¹³C NMR (50 MHz, D₂O) δ 21.7, 39.1, 118.4, 124.5, 125.3, 128.4, 135.4, 139.2, 145.9, 150.9, 156.5, 166.6, 176.7; ESI-MS 299 $[M + H]$ ⁺; HRMS (ESI) calcd for $C_{13}H_8FN_2O_3K_2^+$ 336.9793, found 336.9788.

ASSOCIATED CONTENT

S Supporting Information. NMR spectra of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

NEAUTHOR INFORMATION

Corresponding Author

*E-mail: ponticelli@unisi.it.

ACKNOWLEDGMENT

The work was financially supported by the PRIN Project 2009. The authors wish to thank Dr. Sara Draghi and Centro di Analisi e Determinazioni Strutturali of the University of Siena for recording MS spectra.

REFERENCES

(1) (a) Bose, D. S.; Idrees, M.; Jakka, N. M.; Rao, J. V. J. Comb. Chem. 2010, 12, 100–110. (b) Larsen, R. D.; Corley, E. G.; King, A. O.; Carrol, J. D.; Davis, P.; Verhoeven, T. R.; Reider, P. J.; Labelle, M.; Gauthier, J. Y.; Xiang, Y. B.; Zamboni, R. J. J. Org. Chem. 1996, 61, 3398–3405. (c) Chen, Y. L.; Fang, K. C.; Sheu, J. Y.; Hsu, S. L.; Tzeng, C. C. J. Med. Chem. 2001, 44, 2374–2378. (d) Roma, G.; Braccio, M. D.; Grossi, G.; Mattioli, F.; Ghia, M. Eur. J. Med. Chem. 2000, 35, 1021–1026. (e) Kalluraya, B.; Sreenivasa, S. Farmaco 1998, 53, 399–404. (f) Dube, D.; Blouin, M.; Brideau, C.; Chan, C.-C.; Desmarais, S.; Ethier, D.; Falgueyret, J. P.; Friesen, R. W.; Girard, M.; Girard, Y.; Guay, J.; Riendeau, D.; Tagari, P.; Young, R. N. Bioorg. Med. Chem. Lett. 1998, 8, 1255–1260. (2) Molinski, T. F. Chem. Rev. 1993, 93, 1825–183.

(3) (a) Nittoli, T.; Dushin, R. G.; Ingalls, C.; Cheung, K.; Brawner Floyd, M.; Fraser, H.; Andrea Olland, A.; Hu, Y.; Grosu, G.; Han, X.; Arndt, K.; Guo, B.; Wissner, A. Eur. J. Med. Chem. 2010, 45, 1379–1386. (b) Agarwal, P. K.; Sharma, S. K.; Sawant, D.; Kundu, B. Tetrahedron 2009, 65, 1153–1161. (c) Kim, K.; Wissner, A.; Floyd, M. B., Jr.; Fraser, H. L.; Wang, Y. D.; Dushin, R. G.; Hu, Y.; Olland, A.; Guo, B.; Arndt, K. Bioorg. Med. Chem. Lett. 2009, 19, 5225–5228 and references cited therein.

(4) (a) Commarieu, A.; Hoelderich, W.; Laffitte, J. A.; Dupont, M.-P. J. Mol. Catal. A 2002, 182-183, 137-141. (b) Boyer, J. L.; Krum, J. E.; Myers, M. C.; Fazal, A. N.; Wigal, C. T. J. Org. Chem. 2000, 65, 4712–4714. (c) Cui, C.; Wang, X.; Weiss, R. G. J. Org. Chem. 1996, 61, 1962–1974. (d) Martin, R. Org. Prep. Proced. Int. 1992, 24, 369–435. (e) Hocking, M. B. J. Chem. Technol. Biotechnol. 1980, 30, 626–646.

(5) Litvinov, V. P. In Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Academic Press: London, 2006; Vol. 91, pp 189-300.

(6) Ferrini, S.; Ponticelli, F.; Taddei, M. Org. Lett. 2007, 9, 69–72.

(7) Ferrini, S.; Ponticelli, F.; Taddei, M. J. Org. Chem. 2006, 71, 9217–9220.

(8) Zhu, Q.; Jiang, H.; Li, J.; Zhang, M.; Wang, X.; Qi, C. Tetrahedron 2009, 65, 4604–4613.

(9) Guerrini, G.; Ponticelli, F. Eur. J. Org. Chem. 2010, 3919–3926.

(10) (a) Abdel-Malik, M. M.; De Mayo, P. Can. J. Chem. 1984, 62, 1275–1278. (b) Fifolt, M. J.; Olczak, R. T.; Mundhenke, R. F.; Bieron, J. F. J. Org. Chem. 1985, 50, 4576–4582. (c) Eshghi, H.; Hassankhani, A.; Mosaddegh, E. J. Chem. Res. 2006, 218–219. (d) Rao, H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Chem.—Eur. J. 2006, 12, 3636–3646. (e) Roice, M. Chem.—Eur. J. 2004, 10, 4407–4415.

(11) Anwer, B.; Sged, S. A.; Tanveer, A. F. Tetrahedron Lett. 1976, 36, 3217–3220.

(12) Zhu, L.; Miao, Z.; Sheng, C.; Guo, W.; Yao, J.; Liu, W.; Che, X.; Wang, W.; Cheng, P.; Zhang, W. Eur. J. Med. Chem. 2010, 45, 2726–2732.